Probabilistic Machine Learning Advanced Topics – PDF/EPUB Version Downloadable

$49.99

Author(s): Kevin P. Murphy
Publisher: The MIT Press
ISBN: 9780262048439
Edition:

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty. An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning. Covers generation of high dimensional outputs, such as images, text, and graphs  Discusses methods for discovering insights about data, based on latent variable models  Considers training and testing under different distributions Explores how to use probabilistic models and inference for causal inference and decision making Features online Python code accompanimentÂ