Partial Differential Equations – PDF/EPUB Version Downloadable
$49.99
Author(s): Osamu Sano
Publisher: WSPC/OTHERS
ISBN: 9789811270888
Edition:
Quite a number of phenomena in science and technology, industrial and/or agricultural production and transport, medical and/or biological flows and movements, social and/or economical developments, etc., depend on many variables, and are very much complicated. Although the detailed knowledge is accumulated in respective fields, it is meaningful to model and analyze the essential part of the phenomena in terms of smaller number of variables, which falls into partial differential equations. This book aims at providing students and researchers the basic ideas and the methods to solve problems in various fields. Particular attention is paid to bridge the gap between mathematics and the real world. To do this, we start from a simple system with intuitively understandable physical background, extract the essential part, formulate into mathematical tools, and then generalize for further application. Here logical thinking in depth and wide linking to various fields are sought to construct intellectual network.
Related products
Partial Differential Equations – PDF/EPUB Version Downloadable
$49.99
Author(s): P. R. Garabedian
Publisher: AMS Chelsea Publishing
ISBN: 9781470475055
Edition:
From a review of the original edition:
This book is primarily a text for a graduate course in partial differential equations, although the later chapters are devoted to special topics not ordinarily covered in books in this field … [T]he author has made use of an interesting combination of classical and modern analysis in his proofs … Because of the author’s emphasis on constructive methods for solving problems which are of physical interest, his book will likely be as welcome to the engineer and the physicist as to the mathematician … The author and publisher are to be complimented on the general appearance of the book.
—Mathematical Reviews
This book is a gem. It fills the gap between the standard introductory material on PDEs that an undergraduate is likely to encounter after a good ODE course (separation of variables, the basics of the second-order equations from mathematical physics) and the advanced methods (such as Sobolev spaces and fixed point theorems) that one finds in modern books. Although this is not designed as a textbook for applied mathematics, the approach is strongly informed by applications. For instance, there are many existence and uniqueness results, but they are usually approached via very concrete techniques.
The text contains the standard topics that one expects in an intermediate PDE course: the Dirichlet and Neumann problems, Cauchy’s problem, characteristics, the fundamental solution, PDEs in the complex domain, plus a chapter on finite differences, on nonlinear fluid mechanics, and another on integral equations. It is an excellent text for advanced undergraduates or beginning graduate students in mathematics or neighboring fields, such as engineering and physics, where PDEs play a central role.
Related products
Partial Differential Equations – PDF/EPUB Version Downloadable
$49.99
Author(s): András Vasy
Publisher: American Mathematical Society
ISBN: 9781470469832
Edition:
This text on partial differential equations is intended for readers who want to understand the theoretical underpinnings of modern PDEs in settings that are important for the applications without using extensive analytic tools required by most advanced texts. The assumed mathematical background is at the level of multivariable calculus and basic metric space material, but the latter is recalled as relevant as the text progresses.
The key goal of this book is to be mathematically complete without overwhelming the reader, and to develop PDE theory in a manner that reflects how researchers would think about the material. A concrete example is that distribution theory and the concept of weak solutions are introduced early because while these ideas take some time for the students to get used to, they are fundamentally easy and, on the other hand, play a central role in the field. Then, Hilbert spaces that are quite important in the later development are introduced via completions which give essentially all the features one wants without the overhead of measure theory.
There is additional material provided for readers who would like to learn more than the core material, and there are numerous exercises to help solidify one’s understanding. The text should be suitable for advanced undergraduates or for beginning graduate students including those in engineering or the sciences.
Related products
Partial Differential Equations – PDF/EPUB Version Downloadable
$49.99
Author(s): Lawrence C. Evans
Publisher: American Mathematical Society
ISBN: 9781470469085
Edition:
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including
a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections,a significantly expanded bibliography.About the First Edition:
I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. … Evans’ book is evidence of his mastering of the field and the clarity of presentation.
—Luis Caffarelli, University of Texas
It is fun to teach from Evans’ book. It explains many of the essential ideas and techniques of partial differential equations … Every graduate student in analysis should read it.
—David Jerison, MIT
I usePartial Differential Equationsto prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE’s … I am very happy with the preparation it provides my students.
—Carlos Kenig, University of Chicago
Evans’ book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge … An outstanding reference for many aspects of the field.
—Rafe Mazzeo, Stanford University
Related products
Partial Differential Equations – PDF/EPUB Version Downloadable
$49.99
Author(s): Rustum Choksi
Publisher: American Mathematical Society
ISBN: 9781470464912
Edition:
While partial differential equations (PDEs) are fundamental in mathematics and throughout the sciences, most undergraduate students are only exposed to PDEs through the method of separation of variations. This text is written for undergraduate students from different cohorts with one sole purpose: to facilitate a proficiency in many core concepts in PDEs while enhancing the intuition and appreciation of the subject. For mathematics students this will in turn provide a solid foundation for graduate study. A recurring theme is the role of concentration as captured by Dirac’s delta function. This both guides the student into the structure of the solution to the diffusion equation and PDEs involving the Laplacian and invites them to develop a cognizance for the theory of distributions. Both distributions and the Fourier transform are given full treatment.
The book is rich with physical motivations and interpretations, and it takes special care to clearly explain all the technical mathematical arguments, often with pre-motivations and post-reflections. Through these arguments the reader will develop a deeper proficiency and understanding of advanced calculus. While the text is comprehensive, the material is divided into short sections, allowing particular issues/topics to be addressed in a concise fashion. Sections which are more fundamental to the text are highlighted, allowing the instructor several alternative learning paths. The author’s unique pedagogical style also makes the text ideal for self-learning.
Related products
Partial Differential Equations – PDF/EPUB Version Downloadable
$49.99
Author(s): Jürgen Jost
Publisher: Springer
ISBN: 9780387954288
Edition:
This textbook is intended for students who wish to obtain an introduction to the theory of partial di?erential equations (PDEs, for short), in particular, those of elliptic type. Thus, it does not o?er a comprehensive overview of the whole ?eld of PDEs, but tries to lead the reader to the most important methods and central results in the case of elliptic PDEs. The guiding qu- tion is how one can ?nd a solution of such a PDE. Such a solution will, of course, depend on given constraints and, in turn, if the constraints are of the appropriate type, be uniquely determined by them. We shall pursue a number of strategies for ?nding a solution of a PDE; they can be informally characterized as follows: (0) Write down an explicit formula for the solution in terms of the given data (constraints). This may seem like the best and most natural approach, but this is possible only in rather particular and special cases. Also, such a formula may be rather complicated, so that it is not very helpful for detecting qualitative properties of a solution. Therefore, mathematical analysis has developed other, more powerful, approaches. (1) Solve a sequence of auxiliary problems that approximate the given one, and show that their solutions converge to a solution of that original pr- lem. Di?erential equations are posed in spaces of functions, and those spaces are of in?nite dimension.





