Nonlinear Model Predictive Control Theory and Algorithms – PDF/EPUB Version Downloadable

$49.99

Author(s): Lars Grüne; Jürgen Pannek
Publisher: Springer
ISBN: 9780857295002
Edition:

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC variants. An introduction to nonlinear optimal control algorithms gives insight into how the nonlinear optimisation routine – the core of any NMPC controller – works. An appendix covering NMPC software and accompanying software in MATLAB® and C++(downloadable from www.springer.com/ISBN) enables readers to perform computer experiments exploring the possibilities and limitations of NMPC.