Medical Risk Prediction Models With Ties to Machine Learning 1st Edition – PDF/EPUB Version Downloadable

$49.99

Author(s): Thomas A. Gerds; Michael W. Kattan
Publisher: Chapman & Hall
ISBN: 9780367673734
Edition: 1st Edition

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

Medical Risk Prediction Models: With Ties to Machine Learning is a hands-on book for clinicians, epidemiologists, and professional statisticians who need to make or evaluate a statistical prediction model based on data. The subject of the book is the patient’s individualized probability of a medical event within a given time horizon. Gerds and Kattan describe the mathematical details of making and evaluating a statistical prediction model in a highly pedagogical manner while avoiding mathematical notation. Read this book when you are in doubt about whether a Cox regression model predicts better than a random survival forest. Features: All you need to know to correctly make an online risk calculator from scratch. Discrimination, calibration, and predictive performance with censored data and competing risks. R-code and illustrative examples. Interpretation of prediction performance via benchmarks. Comparison and combination of rival modeling strategies via cross-validation.