On-Chip Networks – PDF/EPUB Version Downloadable

$49.99

Author(s): Natalie Enright
Publisher: Morgan & Claypool Publishers
ISBN: 9781598295849
Edition:

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

With the ability to integrate a large number of cores on a single chip, research into on-chip networks to facilitate communication becomes increasingly important. On-chip networks seek to provide a scalable and high-bandwidth communication substrate for multi-core and many-core architectures. High bandwidth and low latency within the on-chip network must be achieved while fitting within tight area and power budgets. In this lecture, we examine various fundamental aspects of on-chip network design and provide the reader with an overview of the current state-of-the-art research in this field.

Table of Contents: Introduction / Interface with System Architecture / Topology / Routing / Flow Control / Router Microarchitecture / Conclusions

On-Chip Networks – PDF/EPUB Version Downloadable

$49.99

Author(s): Natalie Enright Jerger; Tushar Krishna; Li-Shiuan Peh
Publisher: Springer
ISBN: 9783031006272
Edition:

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

This book targets engineers and researchers familiar with basic computer architecture concepts who are interested in learning about on-chip networks. This work is designed to be a short synthesis of the most critical concepts in on-chip network design. It is a resource for both understanding on-chip network basics and for providing an overview of state of-the-art research in on-chip networks. We believe that an overview that teaches both fundamental concepts and highlights state-of-the-art designs will be of great value to both graduate students and industry engineers. While not an exhaustive text, we hope to illuminate fundamental concepts for the reader as well as identify trends and gaps in on-chip network research. With the rapid advances in this field, we felt it was timely to update and review the state of the art in this second edition. We introduce two new chapters at the end of the book. We have updated the latest research of the past years throughout the book and also expanded our coverage of fundamental concepts to include several research ideas that have now made their way into products and, in our opinion, should be textbook concepts that all on-chip network practitioners should know. For example, these fundamental concepts include message passing, multicast routing, and bubble flow control schemes.

On-Chip Networks – PDF/EPUB Version Downloadable

$49.99

Author(s): Natalie Enright; Li-shiuan Peh
Publisher: Springer
ISBN: 9783031000522
Edition:

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

With the ability to integrate a large number of cores on a single chip, research into on-chip networks to facilitate communication becomes increasingly important. On-chip networks seek to provide a scalable and high-bandwidth communication substrate for multi-core and many-core architectures. High bandwidth and low latency within the on-chip network must be achieved while fitting within tight area and power budgets. In this lecture, we examine various fundamental aspects of on-chip network design and provide the reader with an overview of the current state-of-the-art research in this field. Table of Contents: Introduction / Interface with System Architecture / Topology / Routing / Flow Control / Router Microarchitecture / Conclusions