Mathematical Methods in Data Science Bridging Theory and Applications with Python – PDF/EPUB Version Downloadable

$49.99

Author(s): Sébastien Roch
Publisher: Cambridge University Press
ISBN: 9781009509459
Edition:

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.

Mathematical Methods in Data Science Bridging Theory and Applications with Python – PDF/EPUB Version Downloadable

$49.99

Author(s): Sébastien Roch
Publisher: Cambridge University Press
ISBN: 9781009509459
Edition:

Important: No Access Code

Delivery: This can be downloaded Immediately after purchasing.

Version: Only PDF Version.

Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)

Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Description

Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.